

Контроллер BioSmart 4-0

Руководство по монтажу

оглавление

1.	ВВЕДЕНИЕ
2.	ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПЕРСОНАЛА
3.	ОПИСАНИЕ КОНТРОЛЛЕРА
3.1.	Внешний вид и элементы индикации4
3.2.	Описание индикации и перемычек на плате клеммника контроллера. 5
4.	МОНТАЖ
4.1.	Особенности монтажа7
4.2.	Порядок монтажа
4.3.	Подключение питания контроллера10
4.4.	Подключение контроллера к сети Ethernet 11
4.5.	Подключение БУР BioSmart12
4.6.	Подключение к входному/выходному интерфейсу Wiegand 14
4.7.	Подключение электромеханического замка к плате контроллера 16
4.9.	Подключение кнопок/датчиков17
4.10). Подключение турникетов и других исполнительных устройств 19
5.	ПРОВЕРКА РАБОТОСПОСОБНОСТИ КОНТРОЛЛЕРА

Уважаемые покупатели!

Благодарим Вас за приобретение нашей продукции. При соблюдении правил монтажа и эксплуатации данное устройство прослужит Вам долгие годы.

1. Введение

Настоящий документ описывает порядок действий по монтажу, подключению и конфигурации основных настроек контроллера, а также проведению его диагностики.

Руководство по эксплуатации контроллера BioSmart 4-О и программное обеспечение находятся по адресу <u>www.bio-smart.ru</u> в разделе «Поддержка».

Используемые сокращения:

ПО – программное обеспечение;

СКУД – система контроля и управления доступом;

БУР – блок управления реле.

- так выделена важная информация, на которую следует обратить внимание.

2. Требования к квалификации персонала

К монтажным работам допускаются лица с допуском по работе с электроустановками до 1000 В. (группа по электробезопасности № III), обладающие необходимыми знаниями в области настройки сетевого оборудования и администрирования ОС Windows.

3. Описание контроллера

Контроллер BioSmart 4-O предназначен ДЛЯ работы В составе биометрической системы контроля управления доступом **BioSmart**. И позволяет организовать управление доступом посредством Контроллер идентификации пользователей по уникальным биометрическим особенностям – отпечаткам пальцев и бесконтактным RFID картам, также может применяться для организации учета рабочего времени.

3.1. Внешний вид и элементы индикации

Внешний вид контроллера представлен на рисунке 1.

Рисунок 1. Внешний вид контроллера BioSmart 4-О

- 1 Светодиодный индикатор;
- 2 Оптический сканер отпечатков пальцев;
- 3 Поле считывания RFID-карт;
- 4 Отверстие для ввода кабелей;
- 5 Крепежные отверстия.

Светодиодный индикатор отображает текущее состояние работы контроллера. По умолчанию установлены следующие режимы индикации:

- (

Мигающий зелёный – режим отладки.

Контроллер, подключенный к источнику питания, переходит в режим ожидания отпечатка пальца/карты.

Успешная либо неудачная идентификации пользователя по отпечатку пальца/карте сопровождается соответствующим сигналом светодиодного индикатора и звуковым сигналом.

3.2. Описание индикации и перемычек на плате клеммника контроллера

Плата клеммника контроллера содержит клеммы разъемов для подключения питания, внешних устройств, светодиодные индикаторы и переключатели.

Схема платы приведена на рисунке 2. Описание контактов платы приведено в таблице 1.

Рисунок 2 - Схема клеммных разъемов, переключателей и светодиодных

индикаторов платы клеммника.

NՉ	Обозначение	Описание	Подключаемое
1	BUR-	Интерфейс ВS485-	БУР
2	BUR+	Интерфейс RS485+	551 5VP
-	BORT	νιπερφείε κοτος	Управляющий ПК (цо
3	485-	Интерфейс RS485-	
4	485+	Интерфейс RS485+	управляющий пк (не
5	W01	Выход Wiegand D1	сторонняя скуд, от
			вход
6	WO0	Выход Wiegand D0	Сторонняя СКУД, D0
			Вход
7	WI1	Bход Wiegand D1	Proximity-считыватель,
			D1
8	WIO	Вход Wiegand D0	Proximity -
U			brod meguna bo
9	REL	Релейный выход	Исполнительное
10	REL	Релейный выход	устройство
11	12V	Питание +12 В	«Плюс» источника питания 12В
12	GND	Питание 0 В	«Минус» источника питания 12В
13		INPUT (Дискретный вход)	Дискретный выход датчиков
14	INPUT	INPUT (+12В Дискретный вход)	Дискретный выход
		· · · · · · · · · · · ·	датчиков
15			«Плюс» питания
12		питание внешнего устроиства, +12 В	внешнего устройства
16	-12V+	Питание внешнего устройства «-»	«Минус» питания внешнего устройства

Таблица 1 – Описание клеммных разъемов платы клеммника

- Движковый переключатель **К1** служит для терминирования линии связи RS 485 (переключатель 1) и для защитного смещения (переключатель 2,3)
- Движковый переключатель **К2** служит для установки адреса контроллера при его работе с БУР.
- Контроллер имеет на борту встроенный модуль Ethernet. По умолчанию IP

адрес встроенного модуля Ethernet - **172.25.110.71**.

- Сетевые настройки контроллера могут быть сброшены аппаратно в значения по умолчанию путем замыкания перемычки IP_RST. Это возможно, как в режиме работы основной программы, так и в режиме отладки.
- Светодиоды Link (зеленый) и Activity (красный), размещенные на разъеме RJ-45F, отображают состояние связи контроллера с сетевым устройством
- Светодиод «RUN» загорается на 50 мс. только при получении ответа от процессорной платы.

4. Монтаж

4.1. Особенности монтажа

При выборе места установки контроллера необходимо учитывать следующее:

- При установке нескольких контроллеров, их следует устанавливать на расстоянии не менее 80 см друг от друга для минимизации взаимного влияния работы встроенных считывателей RFID карт;
- Не рекомендуется устанавливать контроллер на расстоянии менее 1 м от любых внешних RFID считывателей и других источников электромагнитных помех. Близко расположенные источники электромагнитных помех могут негативно сказаться на работе встроенных считывателей RFID карт;
- Рекомендуется оставлять запас длины кабелей, подключенных к контроллеру, достаточный для отведения контроллера от стены и доступа к перемычкам;
- При установке контроллера на металлическую поверхность дальность считывания RFID карты может уменьшиться;
- Прокладку кабелей необходимо производить с соблюдением правил эксплуатации электроустановок;
- Не следует прокладывать кабели на расстоянии менее 30 см от источников электромагнитных помех;
- Пересечение всех кабелей с силовыми кабелями допускается только

под прямым углом;

• Любые удлинения кабелей должны производиться только методом пайки.

Перед началом монтажа необходимо учесть следующее:

- 1) Отсутствие механических повреждений на поверхности сканера отпечатков пальцев контроллера, печатной плате и корпусе прибора;
- 2) Зачищенные концы кабеля для подключения контроллера не должны превышать 5 мм, во избежание замыканий;

Используемые типы кабелей приведены в таблице 2.

Таблица 2. Используемые типы кабелей:

№ каб.	Кабельное соединение	Макс. длина	Тип
1	Ethernet (IEEE 802.3) - контроллер	100 m	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .
2	Источник питания - контроллер питания	50 M	Двужильный кабель с сечением проводов не менее 0.75 мм2 (например, ШВВП).
3	Контроллер — замок, БУР - замок	20 м	Двужильный кабель с сечением проводов не менее 0.75 мм2 (например, ШВВП).
4	Контроллер – БУР	10 M	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .
5	Контроллер контакты IN, IN+ - внешние устройства.	10 M	Кабель CQR-6 или RAMCRO-6
6	Контроллер контакты WO0, WO1 - внешние устройства.	60 M	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .
7	Контроллер контакты WIO, WI1 — внешние устройства.	60 M	Четыре витые пары не ниже пятой категории с сечением проводов не менее 0.2 мм ² .

4.2. Порядок монтажа

Монтаж контроллера необходимо осуществлять в следующем порядке:

1) Контроллер извлечь из упаковочной тары и проверить его комплектность;

- 2) Определить место установки контроллера;
- Выкрутить винт, расположенный в нижней части корпуса контроллера и крепящий его к задней крышке. Снять заднюю крышку (см. рисунок 3);

Рисунок 3 - Снятие задней крышки контроллера

- Разметить места крепления контроллера, приложив заднюю крышку контроллера к стене (рисунок 1);
- 5) Осуществить прокладку и подвод всех необходимых кабелей. Должны применяться кабели, соответствующие таблице 2, или близкие по техническим характеристикам. Необходимо проверить отсутствие разрывов, замыканий и механических повреждений в кабелях. Подключение производить при отключенном электропитании;
- 6) Завести кабели в отверстие для ввода кабелей задней крышки контроллера;
- Закрепить заднюю крышку контроллера на установочной поверхности с помощью крепежа, входящего в комплект поставки;
- 8) Подключить питание контроллера согласно п. 4.3 данного руководства;

- 9) Подключить сетевой кабель к контроллеру согласно п.4.4;
- 10) При необходимости подключить замок, внешние датчики и исполнительные устройства согласно п. 4.5 4.10;
- 11) После подключения всех необходимых кабелей установить контроллер на заднюю крышку и завернуть расположенный на нижнем торце крепежный винт.

4.3. Подключение питания контроллера

Подключение питания контроллера производится согласно схеме, приведенной на рисунке 5. Для подключения питания используйте кабель №2 (см. таблицу 2).

Рисунок 5 - Схема подключения питания контроллера

4.4. Подключение контроллера к сети Ethernet

Подключение к сети Ethernet производите согласно рисунку 6.

Сетевое устройство

Рисунок 6 - Схема подключения контроллера к сети Ethernet

Используйте кабель №1 (см. таблицу 2) для подключения контроллера (разъем Ethernet) к компьютеру, коммутатору или роутеру. Обжимку наконечника кабеля нужно производить по стандарту TIA/EIA-568-B, согласно рисунку 7.

Вид сверху со стороны контактов

4.5. Подключение БУР BioSmart

Подключение БУР к контроллеру осуществляется посредством интерфейса RS 485. БУР является инициатором передачи запросов к контроллеру. Количество адресуемых контроллеров должно быть не больше 4. Адреса устройств в сети RS 485 БУР настраиваются при помощи движковых переключателей на БУР и на подключаемых к нему контроллерах.

Рекомендуемый тип сигнального кабеля и его длина приведены в таблице 2.

На каждом контроллере необходимо установить собственный сетевой адрес в сети RS 485 БУР. Установка производится с помощью движкового переключателя K2, расположенного на плате клеммника контроллера (см. рисунок 2). Диапазон изменения адреса 0-3. Назначение адресов не зависит от конкретного контроллера и выбирается произвольно.

Положение переключателей для установки адресов приведено в таблице 3.

Адрес	Положение переключателя 1	Положение переключателя 2
0	OFF	OFF
1	ON	OFF
2	OFF	ON
3	ON	ON

Таблица 3 – Установка адреса контроллера в сети RS 485 БУР.

Схема подключения одного контроллера к БУР приведена на рисунке 8.

Рисунок 8 - Схема подключения контроллера к БУР

Схема подключения двух контроллеров приведена на рисунке 9.

Рисунок 9 - Схема подключения двух контроллеров к БУР

Подробная информация о правилах подключения БУР, перемычках и индикации в различных режимах работы приведена в Инструкции по монтажу БУР BioSmart и Руководстве по эксплуатации БУР BioSmart.

Для корректной работы контроллера с БУР в ПО BioSmart-Studio v5 также необходимо указать БУР в качестве дополнительного оборудования (см Руководство по эксплуатации контроллера BioSmart 4-O).

Подробная информация о конфигурации контроллера в BioSmart Studio v5 приведена в соответствующем разделе Руководства по эксплуатации контроллера BioSmart 4-О и в Руководстве администратора BioSmart-Studio v5.

4.6. Подключение к входному/выходному интерфейсу Wiegand

При подключении сторонних устройств по Wiegand необходимо

руководствоваться эксплуатационными документами, описывающими порядок подключения и настройки этих устройств.

Рекомендуемый тип кабеля и его длина приведены в таблице 2. При подключении необходимо избегать прокладки кабелей считывателей параллельно силовым кабелям (удаление не менее 0,5 м).

Подключения считывателя карт (кодонаборной панели) к контроллеру посредством интерфейса Wiegand производится согласно схеме, приведенной на рисунке 10.

Рисунок 10 - Подключение внешнего считывателя карт (кодонаборной

панели)

Подключение контроллера к стороннему контроллеру СКУД посредством интерфейса Wiegand производится согласно схеме, приведенной на рисунке 11.

Рисунок 11 - Подключение к контроллеру СКУД по интерфейсу Wiegand

4.7. Подключение электромеханического замка к плате контроллера

Подключение электромеханического замка к контроллеру может осуществляться как посредством бортового реле, так и посредством БУР BioSmart.

При использовании бортового реле, замок подключается к контроллеру, согласно схеме, приведенной на рисунке 11. Рекомендуемый тип кабеля и его длина приведены в таблице 2.

 \land

Не рекомендуется использовать один и тот же источник питания для подключения замка и контроллера.

Рисунок 12. Схема подключения электромеханического замка к контроллеру

Информация о подключении замка посредством БУР приведена в Руководстве по эксплуатации БУР BioSmart.

Для защиты бортового реле контроллера от обратного тока, возникающего в цепи при срабатывании замка, требуется установить шунтирующий диод, согласно схеме, приведенной на рисунке 12. Рекомендуется использовать диод типа 1N4007 (1A,100B) или аналогичный.

Подключение электромагнитного замка осуществляется посредством БУР BioSmart. Информация о подключении электромагнитного замка посредством БУР приведена в Руководстве по эксплуатации БУР BioSmart.

4.9. Подключение кнопок/датчиков

Подключение датчика прохода/кнопки выхода из помещения производится к бортовому дискретному входу контроллера согласно схеме, приведенной на рисунке 13.

Рисунок 13. Подключение датчика прохода/кнопки выхода к дискретному входу контроллера.

Если для организации контроля и управления доступом требуется совместное применение датчика прохода и кнопки выхода из помещения, то необходимо производить подключение с использованием БУР BioSmart.

Рекомендуемый тип кабеля и его длина приведены в таблице 2.

Подключение датчика прохода и кнопки посредством БУР производится согласно схеме, приведенной на рисунке 14.

Рисунок 14. Подключение датчика двери или кнопки к бортовому дискретному входу

Рекомендуемый тип кабеля и его длина приведены в таблице 2.

Подключение датчика пожарной тревоги производится аналогично подключению кнопки/датчика прохода.

Подробные сведения о работе с БУР приведены в Руководстве по эксплуатации БУР BioSmart.

4.10.Подключение турникетов и других исполнительных устройств

Подключение турникетов и других исполнительных устройств производится согласно требованиям соответствующих руководящих документов.

Подключение турникетов и других исполнительных устройств может производиться посредством БУР или бортового реле контроллера.

Схема подключения турникета с использованием БУР на примере подключения турникета Ростов-Дон Т83-М приведена на рисунке 15.

Рисунок 15. Подключение турникета Ростов-Дон Т83-М

Схема подключения турникета с использованием бортового реле контроллера на примере подключения турникета Perco TTR-04 приведена на рисунке 16.

Рисунок 16. Подключение турникета Perco TTR-04

5. Проверка работоспособности контроллера

При правильном подключении и установке сетевых параметров световой индикатор режимов работы должен работать в режиме ожидания отпечатка пальца/карты (мигающий синий).

Для проверки работоспособности сканера отпечатков контроллера, приложите палец к сканеру. Должен прозвучать двойной короткий звуковой сигнал, световой индикатор режимов работы должен загореться красным.

Для проверки работоспособности встроенного считывателя карт, поднесите

к полю для считывания, пластиковую карту. Должен прозвучать двойной короткий звуковой сигнал, световой индикатор режимов работы должен загореться красным.